Memorize those ions!

A few ions to add to your list from honors chemistry:

$H^{-1} = hydride$	$CN^{-1} = cyanide$	$N^{-3} = nitride$	$FO_3^{-1} = $ fluorate
$BrO_3^{-1} = bromate$	$BrO_2^{-1} = bromite$	$IO_3^{-1} = iodate$	$H_2PO_4^{-1} = dihydrogen phosphate$
$PO_3^{-3} = phosphite$	$C_4H_5O_6^{-1} = tartrate$	$SCN^{-1} = thiocyanate$	$HCOO^{-1} = formate$

Complexes

Ammonia (NH₃) Complexes: Note: the # of ammonias is double the charge of the metal ion (except with Nickel) and the overall charge of the complex is the same as the metal ion.

All
Colored
Zebras
Could
Never
Cry

Hydroxide (OH) Complexes "AZC 123": $Al(OH)_4^{-1}$

 $\frac{\text{Zn}(\text{OH})_4}{\text{Cr}(\text{OH})_6}^{-2}$

Equations

Assume all reactions happen. Write them in net ionic form (go back and remember those rules!)

Water as a reactant

- Oxides and hydrides never split. •
- Metal (or metal hydride) + water \rightarrow base (hydroxide) + hydrogen ٠ $Ca + H_2O \rightarrow Ca(OH)_2 + H_2$
- Metal oxide + water \rightarrow base (hydroxide) $MgO + H_2O \rightarrow Mg(OH)_2$
- Nonmetal oxide + water \rightarrow acid ٠ $CO_2 + H_2O \rightarrow H_2CO_3$

Acid-Base:

Note: Water will only be a product if base has hydroxide

- Strong Acid + Strong Base \rightarrow Neutral Salt + Water •
- Weak Acid + Strong Base \rightarrow Basic Salt + Water •
- Strong Acid + Weak Base \rightarrow Acidic Salt + Water •
- Ammonia + acid \rightarrow NH₄⁺ + possible other ions •
- Acid + basic salt \rightarrow acid (proton from acid added to basic salt to form new acid) •
- Ammonium ion + hydroxide ion \rightarrow Ammonia (NH₃) + water ٠
- Acid anhydride + base \rightarrow write as two steps to see what acid will form from the anhydride •

Single Displacement and Double Displacement: Know your solubility rules!!!!

Combustion of a hydrocarbon:

•

• Hydrocarbon + $O_2 \rightarrow CO_2 + H_2O$

Combustion of a carbon compound without hydrogen:

• $CX_2 + O_2 \rightarrow CO_2 + X_2O$ (coefficients on X can vary depending on the element/compound)

Formation of complexes with ammonia, hydroxide, cyanide, and thiocyanate: (see above for hints with ammonia and thiocyanate)

Number of ligands (ammonia, cyanide, etc) will be twice the charge of the metal ion. Don't stress over the number though – the important thing is to get the charge of the complex correct.

<u>Metal + Strong Oxoacid (acid with oxygen)</u>: Think of it as breaking apart the acid into an oxide gas, water, and then the metal switches to ionic form

- Metal + HXO \rightarrow Metal ion + oxide gas + water
 - Example: A piece of zinc is immersed in nitric acid
 - $Zn + H^+ + NO_3^- \rightarrow Zn^{+2} + NO + H_2O$ (the "NO" is the oxide gas)