Balancing Redox Equations

Using the Half-Reaction Method
Modified from Holt Modern Chemistry
Equation: $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

1. Assign oxidation numbers.
2. Determine which 2 elements are changing oxidation \#.

- If a compound contains an element that changes oxidation \#, write that compound in ionic form. (follow solubility rules)
- In the equation above, sulfur and nitrogen are changing.
(sulfur from -2 to +6 and nitrogen from +5 to +4).
- For the time being, we'll disregard the elements that don't change oxidation \#. That leaves us:

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{NO}_{2}
$$

Balancing Redox Equations

original equation: $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}+\mathrm{NO}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}} \mathrm{O}$
3. Write the oxidation half reaction.

$$
\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{SO}_{4}{ }^{-2}
$$

Be sure the element in question (sulfur in this case) is balanced (it already is). Then balance oxygen by adding water. Balance
hydrogen by adding H^{+}ions (in basic solutions add OH^{-}
instead). We can add water or H^{+}because we are assuming we are doing this in an acidic, aqueous solution where these species are readily available (or OH^{-}would be available if a basic solution)

$$
\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}
$$

Add electrons to balance the charge. In this case there is a zero charge on the left and a +8 charge on the right, so we must add 8 electrons to the right.

$$
\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}
$$

The oxidation half reaction is now balanced. Phew.

Balancing Redox Equations

original equation: $\mathrm{H}_{\mathbf{2}} \mathrm{S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}+\mathrm{NO}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}} \mathrm{O}$
4. Write the reduction half reaction.

$$
\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}
$$

Balance the atoms (N, H, and O).

$$
\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Balance the charge (add electrons where needed)

$$
\mathrm{e}^{-}+\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Balancing Redox Equations

original equation: $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
5. Multiply half reactions so that the number of electrons lost equals the number gained.

Ox: $1\left(\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}\right)$
Red.: $8\left(\mathrm{e}^{-}+\mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$

Balancing Redox Equations

original equation: $\mathbf{H}_{\mathbf{2}} \mathbf{S}+\mathbf{H N O}_{3} \rightarrow \mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}+\mathbf{N O}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$
6. Combine (add) the half reactions and cancel anything that is found on both sides
$\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}$
$8 \mathrm{e}^{-}+8 \mathrm{NO}_{3}^{-}+16 \mathrm{H}^{+} \rightarrow 8 \mathrm{NO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$8 \mathrm{e}^{-}+8 \mathrm{NO}_{3}^{-}+16 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 8 \mathrm{NO}_{2}+8 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{4}^{-2}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}$
After canceling...
$8 \mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{4}^{-2}$

Balancing Redox Equations

original equation: $\mathrm{H}_{2} \mathrm{~S}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathbf{S O}_{4}+\mathrm{NO}_{\mathbf{2}}+\mathrm{H}_{2} \mathrm{O}$
7. Re-combine the ions to form the compounds found in the original formula. Check to make sure that all other ions balance.
We need to add $2 \mathrm{H}^{+}$ions to the left so that we can make $8 \mathrm{HNO}_{3}$. Since we are adding $2 \mathrm{H}^{+}$to the left, we must also add $2 \mathrm{H}^{+}$to the right.
$8 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{4}^{-2}+2 \mathrm{H}^{+}$
Then we combine the $2 \mathrm{H}^{+}$and $\mathrm{SO}_{4}{ }^{-2}$
$8 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 8 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4}$
-Now double check to make sure the equation is properly balanced.
$\cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$, and OH^{-}can "come out of nowhere". $\mathrm{H}_{2} \mathrm{O}$ in any solution, H^{+}in an acidic solution, and OH^{-}in a basic solution.

Balancing Redox Equations

Brief Summary of Steps for Acidic Solution
After you write the two half reactions, do the following to each half reaction:

1. Balance element in question
2. Balance oxygen by adding water
3. Balance hydrogen by adding H^{+}
4. Balance charge by adding e^{-}
5. Multiply reactions so that e^{-}are equal
6. Add reactions together, recombine ions, cancel things on both sides, and make the equation look like the original

Balancing Redox Equations

Steps for a Basic Solution
After you write the two half reactions, do the following to each half reaction:

1. Follow same steps to balance as if it was acidic (hold off on e^{-}though)
2. Add OH^{-}to both sides to neutralize (make water) with any H^{+}
3. Cancel out any $\mathrm{H}_{2} \mathrm{O}$ appearing on both sides
4. Make sure the charges balance (add e^{-})
5. Multiply reactions so that e^{-}are equal
6. Add reactions together, recombine ions, cancel things on both sides, and make the equation look like the original
